If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=x^2-500x+60900
We move all terms to the left:
0-(x^2-500x+60900)=0
We add all the numbers together, and all the variables
-(x^2-500x+60900)=0
We get rid of parentheses
-x^2+500x-60900=0
We add all the numbers together, and all the variables
-1x^2+500x-60900=0
a = -1; b = 500; c = -60900;
Δ = b2-4ac
Δ = 5002-4·(-1)·(-60900)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(500)-80}{2*-1}=\frac{-580}{-2} =+290 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(500)+80}{2*-1}=\frac{-420}{-2} =+210 $
| 0=x^2-500+60900 | | (2x+1)²=27 | | 7x10-4=5x2+6 | | 4(9x+6))=36x-7 | | √4x+5=√3x-7 | | 23-7x=3×+8 | | x-16=4x-11 | | F(x)=-5-20 | | X^4+2x^2+x^2=0 | | m3+9m-54=0 | | 0.15(5x-2)=0.4(x-1) | | 4.9t^2-28t+195=0 | | x²=212.50 | | 34.5+1.50b=300 | | 34.5+1.50b=300 | | 34.5+1.50b=300 | | 34.5+1.50b=300 | | 34.5+1.50b=300 | | 6(b+1)=7b-2 | | 6(b+1)=7b-2 | | 6(b+1)=7b-2 | | 6(b+1)=7b-2 | | 6(b+1)=7b-2 | | 6(b+1)=7b-2 | | 6(b+1)=7b-2 | | 6(b+1)=7b-2 | | 25d+322=356 | | x=20/3/12 | | 25d+322=356 | | 25d+322=356 | | 50=42+3s | | 4(3-2x)=2(3x-1) |